

 1

Quick Start Guide for Driver Compilation and Installation

Contents
Introduction ...1
1. Using install.sh Script for PC-Linux ...1
2. Decompress the driver source tar ball ...1
3. Selecting Chip Type with make_drv Script (for compound release)2
4. Compilation Settings in Makefile ...2

4.1. Adding or Selecting Target Platform ...2
4.2. Platform Setting Section in Detail ...3
4.3. Other Compilation Settings ...5

5. Integrating Driver Source into Linux Kernel Tree...5
6. Compiling Driver ...6

6.1. Compiling Driver in Driver Source Folder ..6
6.2. Compiling Driver under Kernel Tree...7

7. Driver Installation ..7

Introduction

In this document, we introduce two ways to compile and install our Wi-Fi driver:
1) Using install.sh script for PC-Linux and 2) Step by step manually. The former
targets for end users who are not familiar with Linux system, while the later for
engineers who want to port our Wi-Fi driver onto different platforms.

1. Using install.sh Script for PC-Linux

For driver compilation and installation in PC-Linux, we provide an install.sh
script to do the duties automatically. If you want to use our Wi-Fi solutions to access
network on PC-Linux, you can just run install.sh script and then control Wi-Fi with
utilities such as Network Manager. For further information about Wi-Fi station mode,
please refer to:

 document/Quick_Start_Guide_for_Station_Mode.pdf.

If you want to apply our Wi-Fi solutions on other embedded platforms, you

should read and check the following paragraphs.

2. Decompress the driver source tar ball
The driver source tar ball is located in the driver folder of our software package.

For example, to decompress rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123.tar.gz:

root@driver/# tar zxvf rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123.tar.gz

 2

3. Selecting Chip Type with make_drv Script (for compound release)

Our driver source release has two types: 1) single release, which can build out
driver only for single chip type, and 2) compound release, which can build out drivers
for multiple chip types separately.

For compound release driver, you will see make_drv script after you decompress

the driver tar ball located in driver folder. Before compiling driver source, executing
the make_drv to select the target chip type to compile. For example:

4. Compilation Settings in Makefile
4.1. Adding or Selecting Target Platform

The default target platform is PC-Linux, if you do not want to compile driver for
other platforms you can skip this section.

To add or select target platform for compilation, we provide two sections in
Makefile: 1) platform selection section and 2) platform setting section. First, you
should look at the platform selection section of Makefile:

The platform selection section consists of entries with ‘CONFIG_PLATFORM_’

prefix. Only one entry is allowed to be set with value ‘y’ and others with ‘n’. The

CONFIG_PLATFORM_I386_PC = y

CONFIG_PLATFORM_ANDROID_X86 = n

CONFIG_PLATFORM_ARM_S3C2K4 = n

CONFIG_PLATFORM_ARM_PXA2XX = n

CONFIG_PLATFORM_ARM_S3C6K4 = n

CONFIG_PLATFORM_MIPS_RMI = n

CONFIG_PLATFORM_RTD2880B = n

CONFIG_PLATFORM_MIPS_AR9132 = n

CONFIG_PLATFORM_MT53XX = n

CONFIG_PLATFORM_RTK_DMP = n

root@rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123# ./make_drv

Please select chip type(1/2):

1) RTL8192cu

2) RTL8192du

#? 1

You have selected RTL8192cu

 3

‘CONFIG_PLATFORM_I386_PC’ is selected by default.

We can select an existing entry or add a new entry for your target platform. For

example, to add and select a new entry, ‘CONFIG_PLATFORM_NEW’:

Second, you should create and/or modify the corresponding entry inside platform

setting section. For example, adding the following entry in platform setting section for
‘CONFIG_PLATFORM_NEW’ we just add:

4.2. Platform Setting Section in Detail
l EXTRA_CFLAGS

The EXTRA_CFLAGS is usually used to carry some additional settings at
compilation time through macro definitions.

Macro Effect

CONFIG_BIG_ENDIAN Define some internal data structure as big endian.

CONFIG_LITTLE_ENDIAN Define some internal data structure as little endian.

CONFIG_MINIMAL_MEMORY_USAGE For better performance in powerful platform, we

allocate large physical continuous memory as TX/RX

IO buffers. In some embedded platform, there is

chance to fail to allocate memory. Define this macro to

prevent this situation.

CONFIG_PLATFORM_ANDROID Older Android kernel do not has CONFIG_ANDROID

defined. Define this macro to force the Android

corresponding code inside our driver to be compiled.

For newer Android kernel, it has no need to define this

macro, otherwise, warning message about redefinition

will show up

ifeq ($(CONFIG_PLATFORM_NEW), y)

EXTRA_CFLAGS += -DCONFIG_LITTLE_ENDIAN

ARCH := arm

CROSS_COMPILE := /opt/ new/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

KSRC := /opt /new/kernel

endif

CONFIG_PLATFORM_I386_PC = n

CONFIG_PLATFORM_NEW = y

 4

l ARCH
The ARCH is used to specify the architecture of the target platform CPU, such as:

arm, mips, i386, etc.
l CROSS_COMPILE

The CROSS_COMPILE is used to specify the toolchain prefix used for driver
compilation.
l KSRC

The KSRC is used to specify the path of kernel source used for driver
compilation
l MODULE_NAME

Different module name is assigned to drivers for different chips:

If you want to change the module name, you can set value of MODULE_NAME
here. For example, setting module name as ‘wlan’:

Chip type Default module name

RTL8192CU-series 8192cu

RTL8192CE-series 8192ce

RTL8192DU-series 8192du

RTL8192DE-series 8192de

RTL8723AS-series 8723as

RTL8723AU-series 8723au

RTL8189ES-series 8189es

RTL8188EU-series 8188eu

RTL8723BS-series 8723bs

RTL8723BU-series 8723bu

ifeq ($(CONFIG_PLATFORM_NEW), y)

EXTRA_CFLAGS += -DCONFIG_LITTLE_ENDIAN

ARCH := arm

CROSS_COMPILE := /opt/ new/toolchain/arm-eabi-4.4.3/bin/arm-eabi-

KSRC := /opt /new/kernel

MODULE_NAME := wlan

endif

 5

4.3. Other Compilation Settings
We still have some compilation settings could be applied. For settings and further

information about power saving mode, please refer to:
 document/HowTo_enable_the_power_saving_functionality.pdf.

If you know what the macro means in the autoconf file, you could modify the

configuration by yourself. See the following table for the autoconf file you should
modify for a specific chip type:

5. Integrating Driver Source into Linux Kernel Tree

This paragraph is for integrating our driver source into Linux kernel tree and
building system. If you have no need to do this, simply skip this paragraph.

For compound release driver source, make_drv should be execute to select chip

type for the driver source. Please refer to:
“3. Selecting Chip Type with make_drv Script (for compound release)”.

For different chip types, we have different suggestions for <compile_flag> and

<folder_name> to use for the integration process:

Chip type Autoconf file to modify

RTL8192CU-series autoconf_rtl8192c_usb_linux.h

RTL8192CE-series autoconf_rtl8192c_pci_linux.h

RTL8192DU-series autoconf_rtl8192d_usb_linux.h

RTL8192DE-series autoconf_rtl8192d_pci_linux.h

RTL8723AS-series autoconf_rtl8723a_sdio_linux.h

RTL8723AU-series autoconf_rtl8723a_usb_linux.h

RTL8189ES-series autoconf_rtl8189e_sdio_linux.h

RTL8188EU-series autoconf_rtl8188e_usb_linux.h

RTL8723BS-series autoconf_rtl8723b_sdio_linux.h

RTL8723BU-series autoconf_rtl8723b_usb_linux.h

 6

Assuming the driver source is for RTL8192CU-series, to integrate driver source
into kernel building system, go through the following steps:

1). Copy the driver source folder into drivers/net/wireless/ and rename it as

<folder_name>, rtl8192cu.

2). Add the following line into drivers/net/wireless/Makefile, CONFIG_RTL8192CU

is for <compile_flag>, rtl8192cu is for <folder_name>:

3). Add the following line into drivers/net/wireless/Kconfig, rtl8192cu is for

<folder_name>:

4). Config kernel, for example, with ‘make menuconfig’ command to select ‘y’ or ‘m’

for our driver.

5). Now, you can build kernel with ‘make’ command.

6. Compiling Driver
6.1. Compiling Driver in Driver Source Folder

For compiling driver in the original driver source folder, simply cd into the
driver source folder and start build driver with ‘make’ command.

Chip type <compile_flag> <folder_name>

RTL8192CU-series CONFIG_RTL8192CU rtl8192cu

RTL8192CE-series CONFIG_RTL8192CE rtl8192du

RTL8192DU-series CONFIG_RTL8192DU rtl8192du

RTL8192DE-series CONFIG_RTL8192DE rtl8192de

RTL8723AS-series CONFIG_RTL8723AS rtl8723as

RTL8723AU-series CONFIG_RTL8723AU rtl8723au

RTL8189ES-series CONFIG_RTL8189ES rtl8189es

RTL8188EU-series CONFIG_RTL8188EU rtl8188eu

RTL8723BS-series CONFIG_RTL8723BS rtl8723bs

RTL8723BU-series CONFIG_RTL8723BU rtl8723bu

source "drivers/net/wireless/rtl8192cu/Kconfig"

obj-$(CONFIG_RTL8192CU) += rtl8192cu/

 7

If everything goes well, it will produce a MODULE_NAME.ko file. The
MODULE_NAME is specified in Makefile. Please refer to:

“MODULE_NAME” in “4.2. Platform Setting Section in Detail”.

6.2. Compiling Driver under Kernel Tree
For compiling driver under kernel tree, please refer to:
“5. Integrating Driver Source into Linux Kernel Tree”.

7. Driver Installation

If you have compiled Wi-Fi driver as kernel module and produced a .ko file such
as 8192cu.ko, you should insert driver module with ‘insmod’ command:

As for driver compiled in kernel, it has no need to do ‘insmod’ command.

root@rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123# insmod 8192cu.ko

root@rtl8188C_8192C_8192D_usb_linux_v3.3.0_2920.20111123# ./make

